

CSCI 1810 Computational Molecular Biology

Of Sea Urchins, Birds and Humans

2022 CSCI 1810 Professor Sorin Istrail

Overview

- 1. The Human Genome
- 2. The Molecular Biology Dogma: DNA, RNA and Protein
- 3. Beautiful Algorithms: Rigorous, Practical, Elegant code
- 4. Chapter 1: Sequence Alignment Algorithms
- 5. Chapter 2: Combinatorial Pattern Matching Algorithms
- 6. Chapter 3: Phylogenetic Trees Algorithms
- 7. Chapter 4: Machine Learning Methods: Hidden Markov Models Algorithms
- 8. Chapter 5: Genome Assembly Algorithms (Introduction)
- 9. Chapter 6: Genomic Privacy (Introduction)
- 10. The Bioinformatician as a Detective two puzzles:
 The Adventures of the Dancing Men code, by Sherlock Holmes/Arthur Conan Doyle

The Prison code, a code used in a prison in California

Beautiful Algorithms

- **Rigorous:** state-of-the-art, mathematical analysis of their accuracy
- □ Practical: very efficient, work on large data sets
- □ Elegant code: "simplicity is the ultimate sophistication"
- □ von Neumann's "esthetic criteria"

many applications to different areas

- □ John von Neumann's **"Beautiful" criteria**
- "By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes the observed phenomena... Furthermore, it must satisfy certain esthetic criteria that is, in relation to how much it describes, it must be rather simple ...One cannot tell exactly how "simple" simple is. ...Simplicity is largely a matter of historical background, of previous conditioning, of antecedents, of customary procedures, and it is very much a function of what is explained by it."
- □ John von Neumann

Evolution

Evolution

Theodosius Dobzhansky (1900-1975)

Nothing in Biology Makes Sense Except in the Light of Evolution

Darwin's Finches

and Coco

The Genome

The Sequence of the Human Genome

J. Craig Venter, ..., Sorin Istrail, ..., "The Sequence of the Human Genome" Science, 2001

THE HUMAN GENOME

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

The Genome

J. Craig Venter, ..., Sorin Istrail, ..., "The Sequence of the Human Genome" Science, 2001

"Whole-genome shotgun assembly and comparison of human genome assemblies" Proc. Nat. Acad. Sci. USA, 2004

Biomolecular Data

 A
 G
 C
 T
 A
 T
 C
 G
 G
 C
 C
 A
 T
 T
 A
 G
 T
 C
 A
 A
 T
 T
 A
 G
 T
 C
 G
 A
 C
 T
 A
 G
 T
 C
 A
 A
 C
 T
 A
 G
 T
 C
 A
 A
 C
 T
 A
 G
 T
 C
 A
 A
 C
 T
 A
 G
 T
 C
 A
 A
 C
 T
 T
 A
 G
 T
 C
 A
 A
 C
 T
 T
 C
 A
 A
 C
 T
 T
 C
 A
 C
 T
 T
 C
 C
 A
 C
 T
 T
 C
 C
 A
 C
 T
 T
 C
 C
 A
 C
 T
 T
 C
 C
 A
 C
 T
 T
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Biomolecular Data

"Data! Data! Data!" he cried impatiently. "I can't make bricks without clay."

Sherlock Holmes

"The more I see the less I know for sure."

John Lennon

CCTTGATGCTCCTGGCACAAATGAGCAGAATCTCT GACATGACTTTGGATTTCCCCAGGAGGAGTTŤGAŤ CAGCCATCTCTGTCCTCCATGAGCTGATCCAGCAG

Augustan (C)

INSULIN (CPK colors)

18

oxygen

FNPPKAEGOC

A 8.0

0.0-B 6.0-

0.0-

nit/bgen

碧

Sits

The Dogma of Molecular Biology

The Molecular Biology Dogma

Transcription

© 2013 Pearson Education, Inc.

The set of 20 amino acids

NH₂

The Genetic Code

	U	C.	A	G	
UUUC Phenys UUUC attaining UUUG Laucing CUUC Laucing CUUC Laucing	UUU_Phenyf- UUC_atanine UUA_Laucine	UCC UCA UCG	UAU UAC - Tyrosine UAA Stop codon UAC Stop codon	UGU UGA Stop codon UGG Tryptophen	2040
	CCU CCC CCA CCG	CAU - Hatidine CAC - Gutamine	COU COC COA COO	2040	
*	AUC AUA AUA AUA AUA Methionine start codon	ACU ACC ACA ACG	AAU }- Asperagne	AGC -Serine AGA - Arginine	2040
a	GUC GUA GUO	GCU GCA GCA	GAU Aspartic GAC acid GAA Gutamic GAA Gutamic GAA Gutamic	GGC GGA GGG	2040

	U	C	A	G	
U	UUU Phe	UCU Ser	UAU TW	UGU Cys	U
	OUC Pho	UCC Ser	UAC Typ	UGC Cys	¢
	COLUMN CORES	UCASH	UAA TER	UGATER	A
	UUG Leu	UCGISH	UAG TER	UGG TRP	0
			CAU His	CGU Arg	U
c			CAC His	CGC Arg	c
-			CAAGIn	CGA Arg	A
	GUG LEH		CAG GIn	CGG Arg	G
*	ALL IN	AGU Thr	AAU Ann	AGU Sm	U
		ACC TH	AAC Asn	AGC Ser	c
	AUA No	ACA TH	AAALys	AGA Arg	A
	AUG Mill	ACG TH	AAG Lys	AGG Arg	G
			GAU Ast	GGU Gly	U
G		ODC AN	GAC Asp	GOC ON	c
	GLAR VIII	COM ANI	GAA Ghi	OGAGIy	^
		GED Ala	GAG Glu	GOG GIV	G

		_		_	Secor	id Letter	5	-			
		U		c		A		G			
1st letter	U		Phe	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	UCAG	
	c	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gin	CGU CGC CGA CGG	Arg	DCAG	31
	A	AUU AUC AUA AUG	Be Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	UCAG	let
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	UCAG	

Genetic Variation

SNPs & HAPLOTYPES

Single Nucleotide Polymorphism (SNP) GATTTAGATCGCGATAGAG GATTTAGATCTCGATAGAG

A SNP is a position in a genome at which two or more different bases occur in the population, each with a frequency >1%.

The two alleles at the site are **G** and **T**

□ The most abundant type of polymorphism

tttctccatttgtcgtgacacctttgt<mark>c</mark>gacaccttcatttctgcattctcaattctatttcactggtctqtgg

tacty

ttttacta Cđ acatagcc cagagaccacaatgcctcaaatatttactctacagccctttataaaaacagtgtgccaactcctgatttatgaa cttatcattatgtcaataccatactgtctttattactgtagttttataagtcatgacatcagataatgtaaatc ctccaactttgtttttaatcaaaagtgttttggccatcctagatatactttgtattgccac9taaatttgaaga

tcagcctg aggagaat ccccactc gtccata tacttata ttgtttta tgagatca ggatacag tattttt tgtattgc tacttttc ttaaaaag gatcacga attagcca tgggaggc aaaaagat tctactat

tttctcttttttgtggattttaaaggattttctacata cttttcaacctagactggatgcattttttgttttgttt gaatgtattgaagaatgtattgttgaacaaaagcagtga ggaatgttttcagtctttcactatttaatatgattttad aggaaattcccttctatttctagtttgttgagattttt

Human Genome contains ~ 3 G basepairs arranged in 46 chromosomes.

Two individuals are 99.9% the same. I.e. differ in ~ 3 M basepairs.

SNPs occur once every ~600 bp

Average gene in the human genome spans ~27Kb

 ~ 50 SNPs per gene

ag CC ba at tg at ac tt at bа aa CC tc tt ta tt ġа gg tg þа

Two individuals

THE RECEIPTING THE GENERATE OF TATEOSTARCETASTETC I AT COTARCETACTOR TATR TROUT A ACCURATE TO TA IT ATCOUT AND CTRETCTC TATAT<mark>C</mark>OSTARCETASTETC TATEOSTARCETRETETC TO TATA T**G**OG TARO GTAG TGTO AT CTATATOOS TAAC GTAGTGTC lt l'i<mark>c</mark>os talo girreretri TATAT DOGTARCE TARTETC TCTA TAT COTARCETASTETC IT ATCOUT AND GTACTOR ICTATAT COSTARCE TRETCIC TATEOSTALCGIAGTETC CITCT ATAT COSTARCETARTETC ALCIATET COSTARCETRETEIC TCTATATA GOGTARC GTAGTGTC

Infinite Sites Assumption:

Each site mutates at most once

Haplotype Pattern

 C
 A
 G
 T
 0
 0
 0
 0

 T
 T
 G
 A
 1
 1
 0
 1

 C
 A
 T
 G
 A
 0
 0
 1
 0
 1

 C
 A
 T
 G
 O
 0
 1
 0
 1

 C
 T
 G
 T
 O
 1
 0
 1
 0
 1

At each SNP site label the two alleles as 0 and 1. The choice which allele is 0 and which one is 1 is arbitrary.

CACAGCCTGGATAACAGGAGGACCTTGATGCTCCTGGCACAAATGAGCAGAATCTCT **CCTTCCTCCTGTCTGATGGACAGACATGACTTTGGATTTCCCCCAGGAGGAGTTTGAT GGCAACCAGTTCCAGAAGGCTCCAGCCATCTCTGTCCTCCATGAGCTGATCCAGCAG ATCTTCAACCTCTTTACCACAAAAGATTCATCTGCTGCTTGGGATGAGGACCTCCTA** CAGGAGGAGAGGGGGGGGGGGGAGAAACTCCCCTGATGAATGCGGACTCCATCTTGGCTGTG AAGAAATACTTCCGAAGAATCACTCTCTATCTGACAGAGAAGAAATACAGCCCTTGT **GCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCCTCTCTTTATCAACAAACTTGC AAGAAAGATTAAGGAGGAAGGAATAA, TGTGATCTCCCTGAGACCCACAGCCTGGA** TAACAGGAGGACCTTGATGCTCCTGGCACAAATGAGCAGAATCTCTCCTCCTCCTG **TCTGATGGACAGACATGACTTTGGATTTCCCCCAGGAGGAGTTTGATGGCAACCAGTT** CCAGAAGGCTCCAGCCATCTCTGTCCTCCATGAGCTGATCCAGCAGATCTTCAACCT

What is the meaning of this DNA sequence?

A code to break!

Can you break this code?

XXXX XXXXXXXX

Chapter 1: Sequence Alignment

Avrilla Xinyue Qian

Chapter 1: Sequence Alignment Algorithms

	:	. ***:	*:.		:	*	:*	:
EFTU_ANANI	YDFPGDDI	PIVAGSAI	QALEAT	QGGASGQKGI	NPWVDKI	LKLME	EVDAY	IPTPERE
EFTU_SPIPL	YDFPGDDI	PIVSGSAI	KALDFL	TENPKTTRGE	NDWVDKI	HALM	EVDAY	IPTPERI
EFTU_ODOSI	YDFQVMTF:	RFAPGSAI	QAIRAI	SSNPAIKRGL	NPWVDKI	FALMI	AVDEY	IPTPERI
EFTU_CHACO	YEFPGDKV	PVVSGSAI	MALQAL	TEKPNTSRGE	NKWVDKI	YELMI	AVDSY	IPTPKRI
EFTU_CHLRE	YEFPGDEI	PVVPGSAI	LALEAL	IENPKTQRGE	NKWVDKI	YQLM	NVDSY	IPTPQRE
EFTU_ARATH	YEFNGDDI	PIISGSAI	LAVETL	TENPKVKRGL	NKWVDKI	YELMI	AVEDY	IPIPORC
EFTU_MYCGE	YGFDGKNT	PIIYGSAI	KALE	GD	PKWEAKI	HDLIF	AVDEW	IPTPTRE
EFTU_MYCPN	YGFDGKNT	PIIYGSAI	KALE	GI	PKWEAKI	HDLMN	AVDDO	FQLLNVK
EFTU_CHLVI	YGFPGDDI	PIIKGSAI	NALN		PEGEKAI	MELMI	AVDDY	IPEPVRI
EFTU_BACSU	YDFPGDDV	PVVKGSAI	KALE		AEWEAKI	FELMI	AVDEY	IPTPERI
EFTU_ECOLI	YDFPGDDT	PIVRGSAI	KALE	G	AEWEAKI	LELAC	FLDS	IPEPERA
EFTU_RICPR	YGFPGNEI	PIIKGSAI	QALE	GK	PEGEKAI	NELMI	AVDTY	IPQP
EFTU_BACFR	YDFDGDNT	PIIQGSAI	GALN	G	PKWEDKV	MELME	AVDTW	IPLPPRI
EFTU_CHLTR	KGYKGC	PIIRGSAI	KALE		AAYIEKV	RELMO	AVDDI	PPERE
ruler		10	.250		27	0	28	30

1	MESSIVLATVLEVAIASASKTURICHKSLERAKVGTSKRAKQDGIDLYKE S	0
	HNSSIVLATVLFVAIASASKTRELCHKSLEHAKVGTSKEAKQDGIDLYKH 5	Q
BE_HUHA		
1	4	
	11 11 1 1111.1	

gi[160797|gb|ААА29796.1| gi[9816]emb[CAA77743.1| gi[56749856]sp]268871|НВБ_НОН gi[18015]emb[CAA37898.1|

gi|160797|gb|AAA29796.1| gi|9816|emb|CAA77743.1| gi|56749856|sp|P68871|NBB_NUXA gi|18015|emb|CAA37898.1|

gi[160797|gb|AAA29796.1] gi[9816|emb|CAA77743.1| gi[56749856|sp|F68871|HBB_HUHA gi[18015|emb|CAA37898.1]

> Scarites Carenum Pasimachus Pheropsophus G Brachinus armiger C Brachinus hirsutus ß Aptinus C. G G Pseudomorpha e. т G -

* . .11 1 11. 1 1 . . 1 1⁴1. 1

2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 20 000 22 000 24 000 26 000

Whole genome sequence of the 2019-nCoV **COTONAVITUS**, in one of the first French cases, made at the Institut Pasteur (Paris), using a unique Platform (P2M), open to all French National Reference Centers. Credit: Institut Pasteur/CNR of respiratory infection viruses.

Margaret Dayhoff & PAM Similarity Matrices

Dr. Margaret Oakley Dayhoff The Mother & Father of Bioinformatics

The Atlas of Protein Sequence and Structure 1972

"To those who would know the biochemical structure, function and origin of man and would strive to improve his lot."

Group & Subgroup Names	Amino Acid Residue	Group Properties
Hydrophilic -Small Aliphatic	Alanine Proline Glycine	Small, Simple, Hydrophilic Not hydrophobic, smallest
-Acid amide	Glutamine Asparagine	Slightly basic, amide, carbonyl
-Acid	Glutamic Acid Aspartic Acid	Acid, carbonyl
-Hydroxyl	Serine Threonine	Hydroxyl, small
Sulfhydryl	Cysteine	Uniquely Reactive, Small
Aliphatic	Valine Isoleucine Methionine Leucine	Hydrophobic Similarly branched
Basic	Lysine Arginine Histidine	Basic, Nitrogen, Large
Aromatic	Phenylalanine Tyrosine Tryptophan	Aromatic Rings, Hydrophobic, Large
Special	Histidine Tryptophan	Heterocyclic rings
	Cysteine Serine	Close similarity in shape
	Phenylalanine Leucie Isolenine Methionine	Hydrophobic; similar size

The Smith Waterman Algorithm

Smith and Waterman at Los Alamos, New Mexico Photo by David Lipman, Taken Summer of 1980

ARTEMIS Summer 2008 Professor Istrail

Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase.

AUTHORS

W. C. Barker and M. O. Dayhoff

ABSTRACT

The transforming protein sequences translated from the Rous avian and Moloney murine sarcoma virus src genes are shown to be related to the catalytic chain of bovine cAMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37). The avian transforming protein, also a protein kinase, shows greatest homology with the bovine protein kinase in the carboxyl-terminal half, where the protein kinase activity is localized. Moreover, lysine occurs in the inferred transforming protein sequences at the position homologous with the proposed ATP-binding lysine of the bovine protein kinase. This relationship is consistent with the hypothesis that the src genes originated in the host genomes, in which they are members of a superfamily of distantly related protein kinases that are normal constituents of mammalian cells. In the host, these sequences are much more highly conserved than in the viruses.

ARTEMIS Summer 2008 Professor Istrail

Viral *src* gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase

1 BOV-PKQIEHTL NEKR I - - LQAV NFPF LVKLEFSF KDNSNLYMVMEYV PGGE MFSH2 MMSVSQRSFWA ELN I AGLR HDNIVR VVAASTRT PEDSNS LG T I IME FGGNV TLH3 RSV-PCSPEAFL QEAQV - - MKKL RHEKLVQ L-YAVVSEEP I Y I V I EYMSKGS LLD F

S	E F L	Е	Ι	L	Ν	LV L	S N	Y	VI EY	GG	Н
		*				*				*	

1 BOV-PK- --- --- LR - R I GR F- SE PHAR F YAAQI V LT F EY LHS LD LI YRDL2 MMSVQVIYDATRSPEPLS CR - - KQLSLGKC LKY S LDVVNG L LF LHS QS I LH LDL3 RSV-PC- --- --- LKGEMGKYLRLPQ LV DMAAQI AS GMAYVE RMNYVHRDL

L	R	G K	LSLP	YAAQIV	G	Y	ΗS	H R D L
*								* *

ARTEMIS Summer 2008 Professor Istrail

Viral *src* gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase

1 BOV-PK	QIEHTL NEKRI LQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSH
2 MMSV	SQRSFWA ELN I AGLR HDNIVR VVAASTRT PEDSNS LG T I IME FGGNV TLH
3 RSV-PC	SPEAFL QEAQV MKKL RHEKLVQ L-YAVVSEEPIYIVI EYMSKGS LLD F

S	E F L	E	Ι	L	Ν	L V	L	S N	Y	VI EY	GG	Н
		*				*					*	

L R G K L S L P Y A A Q I V G Y H S H R D L

Information Theory

How long an alignment should be to be statistically significant?

$$H = -\sum_{i=1}^{n} p_i \log p_i$$

Chapter 2: Combinatorial Pattern Matching

Image, courtesy of Vincent van Gogh Museum

Combinatorial Pattern Matching Algorithms

Chapter 2: Combinatorial Pattern Matching

Regular Expression for Motif: [ac]aac[cg]a[cg]g?taa?tg?c[at][at][ac]g

Rube Goldberg's Innovation

Keep You From Forgetting To Mail Your Wife's Letter RUBE GOLDBERG (tm) RGI 049

Mixed character of the problem :

continuous mathematics discrete mathematics GENOMIC REGULATORY SYSTEMS

Emergency knife (S) is always handy in case opossum or the woodpecker gets sick and can't work.

A Tale of Two Networks

Sea Urchin

The Dogma

Figure 9.2 Schematic model for transcriptional activation. The TATA box-binding protein, which bends the DNA upon binding to the TATA box, binds to RNA polymerase and a number of associated proteins to form the preinitiation complex. This complex interacts with different specific transcription factors that bind to promoter proximal elements and enhancer elements.

Genomic Regulatory Regions

Phylogenetic Trees (Ch. 3) ???

Big open problem about what is an evolutionary model for regulatory regions of genes !!!

Phylogenetic trees are not good models for the Regulatory Genome

TF Binding Site Complexity

cis-Regulatory Modules Complexity

THE FIRST GENE

THE FIRST NETWORK

The View from the Genome

A Case Study

Figure 2: Quintessential diagram (from [25])

Figure 3: Computational logic model for Modules A and B of *endo16* (from [25])

Ryan Tarpine

The CYRENE project seeks to address the fundamental problem of determining de novo the function of regulatory sequence by developing the cis-Lexicon, a database of known cis-regulatory modules, the cis-Browser, a next-generation regulatory genome browser, and a library of tools for assisting in the annotation pipeline. The cis-Lexicon will be a comprehensive catalog of experimentally-validated gene regulatory knowledge, designed to be a foundation and benchmark for future prediction algorithms. The cis-Browser is a high-speed integrative environment for viewing and annotating all types of genomic information. It is capable of displaying data from the cis-Lexicon, public online databases, BLAST hits, and precomputed comparative genomics analyses. To aid annotators' entry of information into the cis-Lexicon, we are developing high-throughput tools for finding relevant literature and assisting in the extraction of correct information. We suggest several algorithms to analyze the cis-regulatory data as the cis-Lexicon expands. The CYRENE project is being carried out in cooperation with Eric Davidson at the California Institute of Technology.

The cis-Browser

Transcript Curation

Sequence Comparison

M		
<u>F</u> ile <u>E</u> dit <u>S</u> earch <u>B</u> ookmark F	il <u>t</u> ers <u>V</u> iews <u>O</u> ptions <u>D</u> ata Manipulation <u>W</u> indow <u>H</u> elp	16606
no sapiens:Component 4 asser 🔺		GRAIL
Chr1 🗖		Bn:CHGI
GA_x5HB7VCJ5SS (Len: 25.		Bx:nraa
GA_x54KRE8EL5L (Len: 25.3Mb		Bn:CMGI
GA_x54KRE8J2QS (Len: 16.79M		S4:human_dbEST
GA_x5J8B7NWBLE (Len: 16.74N		
GA_x54KRE8DBDM (Len: 12.96I		Bn:mouse
GA_x5L2HTVAVSK (Len: 10.33M		-
GA_x5HB7VCJ5FA (Len: 9.06Mb		Bn:human_dbEST
GA_x5L2HTU1V2W (Len: 8.4Mb,		Bn:dog 📃
GA_x5HB7VCJ5NU (Len: 8.09M		Otto
GA_x5J8B7NYNCY (Len: 7.18Mb		Promoted
GA_x5J8B7P0VAE (Len: 5.98Mb,		Workspace
GA_X54KRE8FPC6 (Len: 5.32Mk		Axis
GA_X5J8B/NVVR96 (Len: 4.77M)	200.4K 5260.6K 5260.8K 5261.0K 5261.2K 5261.4K 5261.6K 5261.8K	
		Workspace (rev)
GA_X54KRE89KKH (Left. 4.4500)		Promoted (rev)
GA_X34KRE69KQT (LETL 4.3MD, GA_X619B7B00B97L op: 2.69Mb		
GA_x519B7NTLIGE (Lon: 3.42Mb	Y	SNP (rev)
		-
Bx:nraa:CELERA:5000009072895	🗟 Consensus Sequence 🗟 Feature Report 🗟 Query Sequence Alignments 🛛 Sequence Analysis 🗟 Subject Sequence Analysis	ence Alignments
Property Value		<u> </u>
Id CELERA:500000:		. 3
Aliases (Numb 0 🛨 📕		+J
Order Number 1		+2
Comments 0 🛨	S G Q R G S S K L K G D D L Q.A I K K P	+1
Feature Type High Scoring Pair	S G Q MAG S S E L K G D D L Q A I R R	
Algorithm:Data Bx:nraa	gt ggacaaaggggat ot to aat t gaaagg gat gacot toaggocat aaaagga <mark>go</mark> t gac cagat aaaacaaaa	DNA +
Parent Feature CELERA: 500000	yr yyn can yyn yn yr reffer aan f gaa ag gryg af gaeer f caggeeraf panaag gaar f gae o cagaf aaaac aaaa	
Axis Name GA x5HB7VCJ5	С С С С С С С С С С С С С С С С С С С	Query Sequence
Axis Id CELERA:195000		Axis
Axis Begin 5261006	3260300 3260370 3260380 3260330 3261000 3261010 4261120 3261030	
Axis End 5261183		DNA 🔺
Entity Length 177	X	-1
Entity Orientation Forward	C .	-2
Is Child true		-3
Is Composite false		
Relative Asse 985037830		
		<u> </u>
urrent Selection: (By:nraa)By:nraa(ELERA:5000000728954	

Inter-species comparison

One gene, 30 years of study, 300 docs and postdocs A Proposal for Nobel Prize

"Programs built into the DNA of every animal." Eric H. Davidson

Genomic Regulatory Systems

The View from the Nucleus

View from the nucleus: Endomesoderm nuclei to hatching blastula stage; the Wnt8/Tcf signalling loop and its genes. Apr. 19th, 2002

Notes:

- β-catenin/Tcf input now produced by a zygotic signaling loop driven by Wnt8 expression in endmesoderm cells.
- β-catenin/Tcf input required for expression of many regulatory genes that become active in the veg₂ endomesodermal territory during early- mid blastula stage.

The Building Blocks Free Energy **Free energy is the "GLUE"** Protein Protein-DNA Binding (free energy)

Information Processing

Boolean Circuit Synchronous input and output Completely defined gates

-Completely defined gates

Incompletely defined gates

Chapter 3: Phylogenetic Trees

Phylogenetic Trees Algorithms

Chapter 3: Phylogenetic Trees Algorithms

CHARLES DARWIN QUOTE

The SARS-CoV-2 phylogenetic tree – the family tree that shows the evolution of all the sequenced coronavirus samples worldwide.

Herbert Simon's Parable on Evolution "The Parable of the Two Watchmakers"

A mathematical theory of "interruptions"

How can we quantify the Speed of Evolution?

Chapter 4: Hidden Markov Models

Chapter 4

Machine Learning Methods:

Hidden Markov Models Algorithms

Chapter 4: Hidden Markov Chains Algorithms

Gene finding in a genome using HMMs algorithms

"For one rational line or true sentence there are thousands of nonsense cacophonies, mountains of verbal trash and incoherencies." Jorge Luis Borges

Chapter 5: Genome Assembly Algorithms: An Introduction

Chapter 5: Genome Assembly Algorithms

	1 7.12 1			-1 2 -71 7	-	m 7
(GATA163B10) 25Mb 20Mb 27	ub 28Mb	2946 3046	31Mb 34	MD 23MD	34Mb 35Mb	3646 3746 3946
S & Commence	City Control and the	dalalater aluna dur			Claim el a fin a la serie de	
		n n www.				
86Mb 06Mb 83	(ATA23005) Mb 00Mb	BAMD BOMD	01Mb 02	93Mb	GATAOBHON 64Mb (GMb	00Mb 07Mb 00Mb
לכי כמי	a class	77 51		111		S. 1. 2.
					Enter I	·
145Mb 146Mb 14	145Mb	140Mb 160Mb	161Mb 16	5Mb 169Mb	164Mb 156Mb	16(340 167Ab 169Ab 169Ab
						ν., <u>Σ</u>
			ų i	1 align		
(GGAANGO) 27/No 200/00 21	Mb 30Mb	31Mb 22Mb	33Mb 34	B/b 355/b	(GATA31A10) 363.6b 377//b	388/b 398/b 40Mb
				2000		
	2					
(GATASDos) 87145 98945 84	MD SOMD	#1Mb 82Mb	03Mb 04	GATA22F05 85Mb	adada 9754b	9884b 9984b 10946
		el ester	h Tu la Sh			
711 11/22						
147Mb 140Mb 14	ano icomo	OMD	240	(AFM1275h2)	546	7Mb 04/b 04/b

Genome Assembly Algorithm Celera Assembler

CHIZZ

Ohr 20*

On 18

Onto

Chill

Cht 12

CH10

CH108

Chrob

ChiOk

CHO2

CHI 03

Onol

CHIOS

Chron

On OP

/work/831-vs-P24 X20 u1, f20 g0 matches sorted /work/831-vs-P833 A X20 u1 f20 g0 matches sorted /work/831-vs-CSA8 L20 u1 f20 g0 matches sorted /work/831-vs-R27A L20 u1, f20 g0 matches sorted /work/831-vs-R27A L20 u1, f20 g0 matches sorted /work/831-vs-VAN X20 u1, f20 g0 matches sorted

Chill

On 15

Ontli

01113

OH 19

Chill

The Father of All Dot Plots

The Human Genome

2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 20 000 22 000 24 000 26 000

Whole genome sequence of the 2019-nCoV **COTONAVITUS**, in one of the first French cases, made at the Institut Pasteur (Paris), using a unique Platform (P2M), open to all French National Reference Centers. Credit: Institut Pasteur/CNR of respiratory infection viruses.

Chapter 6: Genomic Privacy

Image, courtesy of Vincent van Gogh Museum

HOMER's attack:

Genomic privacy studies on Genome-Wide Association Studies (GWAS) were first introduced as the well-known Homer's attack (2008) that showed that publicly released GWAS statistics can be used to estimate a GWAS participant's disease status from knowing her/his genotypes at certain risk factors.

Enjoy working on large data? Solve mysteries in your spare time? Are you hard-boiled?

Work to uncover the mysteries of complex disease! Take CSCI2820: Medical Bioinformatics in the Fall Tuesday/Thursday 2:30-3:50pm

Use your detective skills; analyze a matrix of *billions* of DNA bases!

veaturing private investigator Sorin Istrai

gcgaggcagccagcgagggagagagcgagcgggcgagccgggcgagcgaggaagggaaagcg caagagagagcgcacacgcacaccccgccgcgcgcactcgcgcacggacccgcacgggga cageteggaagteateagtteeatgggegagatgetgetgetgegggagatgtetgetgetagte ctcgtctcctcgctgctggtatgctcgggactggcgtgcggaccgggcagggggttcgggaag aggaggcaccccaaaaagctgacccctttagcctacaagcagtttatccccaatgtggccgag aagaccctaggcgccagcggaaggtatgaagggaagatctccagaaactccgagcgatttaa ggaactcacccccaattacaaccccgacatcatatttaaggatgaagaaaacaccggagcgg acaggetgatgactcagaggtgtaaggacaagttgaacgetttggceateteggtgatgaace agtggccaggagtgaaactgcgggtgaccgagggctgggacgaagatggccaccactcaga ggagtetetgeactacgagggeegecgeggagtggaeateaceaegtetgaeegegaeegeagea agtacggcatgctggcccgcctggcggtggaggccggcttcgactgggtgtactacgagtcca aggcacatatccactgctcggtgaaagcagagaactcggtggcggccaaatcgggaggctgc ttcccgggctcggccacggtgcacctggagcaggcggcaccaagctggtgaaggacctgag ccccggggaccgcgtgctggcggcggacgaccagggccggctgctctacagcgacttcctcac tttcctggaccgcgacgacggcgccaagaaggtcttctacgtgatcgagacgcgggagccgcg cgagcgcctgctgctcaccgccgcgcacctgctctttgtggcgccgcacaacgactcggccacc ggggagcccgaggcgtcctcggggctcggggcgccttccgggggcgcactggggcctcgggc ctgttcgccagccgcgtgcgcccgggccagcgcgtgtacgtggtggccgagcgtgacgggga gcteetgeeegeegetgtgeacagegtgaeeetaagegaggaggeegegegeeta cacggcccagggcaccattctcatcaaccgggtgctggcctcgtgctacgcggtc Accagetgggegeaccgggeettegegeettecgeetggegeacgegeteetg sectaaccgctccaggtgctgccgacgctccgggtgcgggggcc accgcgggcatteactggtactcgcagetgctctaccaaataggcacctggctcctggacagc cggacccgcacggggacagctcggaagtcatcagttccatgggcgagatgctgctgctggcga gatgtctgctgctagtcctcgtctcctcgctgctggtatgctcgggactggcgtgcggaccgggc agggggttcgggaagaggaggcaccccaaaaagctgacccctttagcctacaagcagtttatc cccaatgtggccgagaagaccctaggcgccagcggaaggtatgaagggaagatctccagaaa ctccgagcgatttaaggaactcacccccaattacaaccccgacatcatatttaaggatgaagaa aacaccggagcggacaggctgatgactcagaggtgtaaggacaagttgaacgctttggccatc tcggtgatgaaccagtggccaggagtgaaactgcgggtgaccgagggctgggacgaagatgg ccaccactcagaggagtctctgcactacgagggccgcgcagtggacatcaccacgtctgaccg cgaccgcagcaagtacggcatgctggcccgcctggcggtggaggccggcttcgactgggtgta ctacgagtccaaggcacatatccactgctcggtgaaagcagagaactcggtggcggccaaatc gggaggctgcttcccgggctcggccacggtgcacctggagcagggcggcaccaagctggtga aggacctgagccccgggggaccgcgtgctggcggcggacgaccagggccggctgctctacagc gactteetcacttteetggacegegaeggegegecaagaaggtettetaegtgategagaege gggagccgcgagcgcctgctgctcaccgccgcgcacctgctctttgtggcgccgcacaacg actcggccaccggggagcccgaggcgtcctcggggccgccttccgggggcgcactg gggcctcgggcgctgttcgccagccgcgtgcgcccgggccagcgcgtgtacgtggtggccgag cgtgacggggaccgccggctcctgcccgccgctgtgcacagcgtgaccctaagcgaggaggc cgcgggcgcctacgcgccgctcacggcccagggcaccattctcatcaaccgggtgctggcctc

http://www.cs.brown.edu/courses/csci1820/

"The Sequence of the Human Genome" Science, 2001

"Whole-genome shotgun assembly and comparison of human genome assemblies" Proc. Nat. Acad. Sci. USA, 2004

http://www.cs.brown.edu/courses/csci1820/

"The Sequence of the Human Genome" Science, 2001

"Whole-genome shotgun assembly and comparison of human genome assemblies" Proc. Nat. Acad. Sci. USA, 2004

http://www.cs.brown.edu/courses/csci1820/

The cis-Regulatory CYRENE Genome Browser

Eric Davidson and Sorin working on "Logic functions of the genetic cis-regulatory code"

http://www.cs.brown.edu/courses/csci182(

Prof. Sorin Ist	rail Topics include	
	Genome sequencing and assembly:	
	algorithms and statistical theory	
	□ BLAST algorithms and statistical theory	ry
	of alignment and searching	
	Mapping reads and genomes to	
	genomes	
CLA Chambelling School Chambelling Chambelling Chambelling Chambelling	DNA combinatorics and statistical	
	theory of regulatory regions of genes	
	Hidden Markov model algorithms and	
	or gene prediction	
	CHON CHON CHON CHON CHON CHILL CHILL CHILL CHILL CHILL	
	"Whole-genome shotgun assembly and comparison	

"The Sequence of the Human Genome" Science, 2001

of human genome assemblies" Proc. Nat. Acad. Sci. USA, 2004

CSCI2840 Advanced Algorithms in Computational Biology and Medical Bioinformatics

Genome-wide Association Studies (GWAS)

Published Genome-Wide Associations through 2011 1,617 published GWA at p≤5X10⁻⁸ for 249 traits

The GWAS Human Genome

Coffee consumption Cognitive function Abdominal aortic aneurysm O Acute lymphoblastic leukemia O Conduct disorder Adhesion molecules O Colorectal cancer O Corneal thickness Adiponectin levels O Coronary disease Age-related macular degeneration Cortical thickness AIDS progression Creutzfeldt-Jakob disease Alcohol dependence Alopecia areata Crohn's disease Alzheimer disease Amyloid A levels Cutaneous nevi Amvotrophic lateral sclerosis Cystic fibrosis severity O Angiotensin-converting enzyme activity O Dermatitis Ankylosing spondylitis OHFA-s levels Diabetic retinopathy Arterial stiffness Asparagus anosmia Dilated cardiomyopathy Drug-induced liver injury Asthma Atherosclerosis in HIV Atrial fibrillation Endometrial cancer Attention deficit hyperactivity disorder Endometriosis Eosinophil count Autism Eosinophilic esophagitis Basal cell cance Behoet's disease O Bipolar disorder Biliary atresia Erythrocyte parameters Esophageal cancer Bilin bin Essential tremor Ritter taste response O Birth weight Exfoliation glaucoma Bladder cancer Eye color traits F cell distribution Bleomycin sensitivity Blond or brown hair Fibringen levels O Blood pressure Folate pathway vitamins Blue or green eyes Follicular lymphoma BMI waist circumference Fuch's corneal dystrophy O Bone density Freckles and burning Breast cancer Gallstones O Butyrylcholinesterase levels O Gastric cancer Glioma C-reactive protein Calcium levels Glycemic traits Cardiac structure/function Graves disease Cardiovascular risk factors O Hair color Hair morphology Carnitine levels O Carotenoid/tocopherol levels Handedness in dvslexia Carotid atherosclerosis HDL cholesterol O Celiac disease O Heart failure O Heart rate Celiac disease and rheumatoid arthritis O Cerebral atrophy measures Height Chronic lymphocytic leukemia O Hemostasis parameters O Chronic myeloid leukemia Hepatic steatosis Cleft lip/palate O Hepatitis

O Hepatitis B vaccine response Hepatocellular carcinoma O Hirschsprung's disease O HIV-1 control Hodgkin's lymphoma O Homocysteine levels HPV seropositivity O Hypospadias O Idiopathic pulmonary fibrosis Crohn's disease and celiar disease IFN-related cytopeni IgA levels IgE levels Inflammatory bowel disease Insulin-like growth factors Intracranial aneurysm Iris color Iron status markers O Drug-induced liver injury (anototin-clavulary Ischemic stroke O Juvenile idiopathic arthritis Keloid Kidney stones LDL cholesterol Epirubicin-induced leukopenia C Leprosv Erectile dysfunction and prostate cancer treatment O Leptin receptor levels Liver enzymes Longevity LP (a) levels O LoPLA(2) activity and mass Lung cancer Magnesium levels Major mood disorders Malaria O Male pattern baldness Mammographic density Matrix metalloproteinase levels O MCP-1 Melanoma O Menarche & menopause Meningioma Meningococcal disease O Metabolic syndrome Migraine Moyamoya disease Multiple sclerosis Myeloproliferative neoplasms Myopia (pathological) N-glycan levels O Narcolepsy O Nasopharyngeal cancer Natriuretic pentide levels

O Neuroblastoma Nicotine dependence O Obesity Open angle glaucoma Open personality Ontic disc parameters Osteoarthritis O Osteonorosis Otosclerosis Other metabolic traits Ovarian cancer Pancreatic cancer Pain O Paget's disease Panic disorder Parkinson's disease O Periodontitis Peripheral arterial disease Personality dimensions Phosphatidylcholine levels Phosphorus levels O Photic sneeze Phytosterol levels O Platelet count Polycystic ovary syndrome O Primary biliary cirrhosis Primary sclerosing cholangitis PR interval O Progranulin levels Progressive supranuclear palsy Prostate cancer Protein levels O PSA levels O Psoriasis O Psoriatic arthritis Pulmonary funct COPD ORS interval QT interval Quantitative traits Recombination rate Red vs.non-red hair Refractive error O Renal cell carcinoma Renal function Response to antidepressants Response to antipsychotic therapy O Response to carbamazepine Response to clopidogrel therapy Response to hepatitis C treat Response to interferon beta therap

Prof. Sorin Istrail

Response to metaformin Response to statin therapy Restless leas syndrome Retinal vascular caliber Retinol levels Rheumatoid arthritis Ribavirin-induced anemia Schizophrenia Serum metabolites Skin pigmentation Smoking behavior Speech perception O Sphingolipid levels Statin-induced myopathy Stevens-Johnson syndrome Stroke Sudden cardiac arrest O Suicide attempts Systemic lupus erythematosus Systemic sclerosis T-tau levels Tau AB1-42 levels O Telomere length Testicular germ cell tumor Thyroid cancer Thyroid volume Tooth development Total cholesterol Triglycerides Tuberculosis O Type 1 diabetes Type 2 diabetes Ulcerative colitis O Urate Urinary albumin excretion Urinary metabolites Uterine fibroids Venous thromboembolism Ventricular conduction VEGE levels Vertical cup-disc ratio Vitamin B12 levels Vitamin D insuffiency O Vitamin E levels Vitiliao Warfarin dose Weight O White cell count White matter hyperintensity

eron heta therany YKL-40 levels

CSCI2820 Advanced Algorithms in Computational Biology and Medical Bioinformatics

Genome-wide Association Studies (GWAS)

Prof. Sorin Istrail

Published Genome-Wide Associations through 2011 1,617 published GWA at p≤5X10⁻⁸ for 249 traits

Genetic Heterogeneity

The Common Disease Common Variant (CDCV) hypothesis is dead. Long live the Common Disease Many Rare Variants hypothesis!

The CDCV 's classical drawing metaphor as "Needles in the Haystack," with few needles with a common look in a large haystack, needs to be replaced now with a van Gogh-like drawing, with many needles each differently looking and private to areas in the large haystack.

Vincent

CSCI2820 Advanced Algorithms in Computational Biology and Medical Bioinformatics

Genome-wide Association Studies (GWAS)

Prof. Sorin Istrail

Published Genome-Wide Associations through 2011 1,617 published GWA at p≤5X10⁻⁸ for 249 traits

The Missing Heritability Puzzle

Additivity of alleles? Just a convenient approximation, friendly to "heritability" measured as a correlation coefficient.

Ronald

CSCI2820 Advanced Algorithms in Computational Biology and Medical Bioinformatics

Genome-wide Association Studies (GWAS)

Prof. Sorin Istrail

Bioinformatics is detective work

□ The Dancing Men code, Sherlock Holmes

The Prison code, a real life code used in CA

The Adventures of the Dancing Men

by Sir Arthur Conan Doyle "Sherlock Holmes"

criminal's massage (1)

373223742

criminal's message (2)

Elsie's reply

XXXXYXYXXXXX

criminal's message (3)

The Adventures of the Dancing Men

by Sir Arthur Conan Doyle "Sherlock Holmes"

Dancing Man Code (Sherlock Holmes)

X + X X X X Y Y Y Y X X * X A B C D E F G H I J K L M & Y Y Y Y X X Y Z N O P Q R S T U V W X Y Z X & & X & X & X X Z

567890

The Dancing Men code

by Arthur Conan Doyle: "The Adventures of the Dancing Men"

The Prison code

Solution: An Algorithm based on Markov Chain Monte Carlo

Maser Birth, Tight & Middan,

I II be a description, thus character a dard Phaye

To be a series of the series o

The day affective costs and the providence of th

and Perform Tracends Good, Carl 1 Control Following, 2021, Aust. 27th York, clinic and mentality, surface, foreign and That

CHAPTER

THE I HOUSE NO

Ann Service and A such

I And the second constitute have a period and to be also a bare a period and to be also a bare a period a period of the second bare and the second of the second

A start when the same of the s

A set his show they do do not set of a set of the show the show of the show

ar the receive start, and a star the act are was the fact, are made to four P.

And the part of the second sec

Start, And, School An, Mark SM, Derry and Lin Luca. Do: Anny Mar. De Division and An Alan. Division for Vision Cost Office second 16: Anno 1999 Start Cost Office Second Annual Annual Linco Long of the Mich Division Annual Linco Long Office Second Division Annual Linco Linco Long Office Second Division Annual Linco Linco Linco Linco Linco Linco Linco Linco Annual Linco Linco Linco Linco Linco Linco Linco Linco Annual Linco L

All their die Aller's Aller mitte Olies an Alle Anal he made. Was mitte Olies an aller and all and a state and all all and a

in Some plan that the second returns in the plan that the local the second in the months to show the part while the first trong the base of Plat value.

if to say here to a widin the short of Millins, had not been not not for anna And ar unit, and find for trends to the short hidse's field.

trin Vice accept had \$20 ton stand provid halond dama, and walkened bit Soch the main target to Brand

Eric Davidson – in memoriam