Knuth-Morris-Pratt Algorithm

CS181 Fall 2020

Professor Sorin Istrail
Overview of Knuth-Morris-Pratt (KMP)

- The Knuth-Morris-Pratt (KMP) algorithm is a pattern-matching algorithm; it finds all occurrences of a pattern P of length p in a text T of length t
- It takes advantage of the failure function f on the pattern P to search in linear time $O(p + t)$!
 - The general idea is that after we’ve seen a character in T once, we should already be able to tell whether the pattern could start there, even if we never explicitly attempted to match P_1 directly to T_j
- We’ve already seen the algorithm and pseudocode for constructing the failure function, so we’ll focus on KMP here using a similar example
Definitions

● Inputs:
 ○ Text T, indexed by j from 1 to t
 ○ Pattern P, indexed by i from 1 to p

● Output:
 ○ A list of positions k, where $T_{k:k+p} = P$

● Failure function, f
 ○ A table of p entries, where each entry $f(i)$ is the length of the longest proper suffix of $P_{1:i}$ which is also a proper prefix of P
 ○ See previous slide deck for a more detailed explanation
The Algorithm

1. Calculate the failure function \(f \) for the pattern \(P \)
2. Construct a skeleton DFA which accepts \(P \) and includes transitions based on \(f \)
3. Initialize the skeleton DFA to state 0 and the \(T \) pointer to 1
4. Iterate through the text \(T \)

Here we show a version of the pseudocode which conceptualizes KMP with an accepting skeleton DFA. In practice, the skeleton DFA behavior can also be achieved using only the pattern \(P \), the failure function \(f \), and a pointer \(i \) which indexes symbols in \(P \) rather than states in \(M \).

calculate \(f(i) \) for \(1 \leq i \leq p \)
construct a skeleton DFA \(M \) for \(P \) using \(f \)
\(M \) starts in state \(M_0 \)
i := current state in \(M \) (updated with transitions)
j \(\leftarrow 1 \)
while \(j \leq t \) do
 if \(T_j = P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 \(M \) enters state \(M_{i+1} \)
 if \(M \) is in state \(M_p \) then
 record \((j - p) \)
 \(M \) enters state \(M_{f(p)} \)
 end
 else
 \(M \) enters state \(M_{f(i)} \)
 if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 end
 end
end
An Example

\(T = \text{aabbabaabaabaca} \)

\(P = \text{abaabc} \)

calculate \(f(i) \) for \(1 \leq i \leq p \)
construct a skeleton DFA \(M \) for \(P \) using \(f \)
\(M \) starts in state \(M_0 \)
\(i := \) current state in \(M \) (updated with transitions)
\(j \leftarrow 1 \)
while \(j \leq t \) do
 if \(T_j = P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 \(M \) enters state \(M_{i+1} \)
 if \(M \) is in state \(M_p \) then
 record \((j-p) \)
 \(M \) enters state \(M_{f(p)} \)
 end
 else
 \(M \) enters state \(M_{f(i)} \)
 if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 end
 end
end
See previous set of slides for exactly how we constructed this!
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f

M starts in state M_0
i := current state in M (updated with transitions)
j \leftarrow 1

while j $\leq t$ do
 if $T_j = P_{i+1}$ then
 j \leftarrow $j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 j \leftarrow $j + 1$
 end
 end
end

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>$f(i)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
construct $f(i)$ for $1 \leq i \leq p$.

M starts in state M_0.

$i \leftarrow i + 1$

else

if M is in state M_t and $T_j \neq P_{i+1}$ then

if M is in state M_t then

M enters state M_{t+1}

end

M enters state M_{t+1}

end

end

end

$i = 0, 1, 2, 3, 4, 5, 6$
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
$j \leftarrow 1$
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 \textbf{if} M is in state M_p \textbf{then}
 record $(j - p)$
 M enters state $M_{f(p)}$
 \textbf{end}
 \textbf{else}
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 \textbf{end}
 \textbf{end}
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end

<table>
<thead>
<tr>
<th>$f(i)$</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end
calculate \(f(i) \) for \(1 \leq i \leq p \\
construct a skeleton DFA \(M \) for \(P \) using \(f \) \\
\(M \) starts in state \(M_0 \) \\
i := current state in \(M \) (updated with transitions) \\
j := 0 \\
while \(j \leq t \) do \\
 if \(T_j = P_{i+1} \) then \\
 j := j + 1 \\
 M enters state \(M_{i+1} \) \\
 if \(M \) is in state \(M_p \) then \\
 record \((j - p) \) \\
 M enters state \(M_{f(p)} \) \\
 end \\
 else \\
 M enters state \(M_{f(i)} \) \\
 if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then \\
 j := j + 1 \\
 end \\
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$
do
 if $T_j = P_{i+1}$ then
 $j := j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j := j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$

if $T_j = P_{i+1}$ then

\begin{align*}
 j &\leftarrow j + 1 \\
 M &\text{ enters state } M_{i+1} \hspace{1cm} \text{if } M \text{ is in state } M_p \text{ then} \\
 &\text{ record } (j - p) \\
 &\text{ } M \text{ enters state } M_{f(p)} \\
 \end{align*}

else

\begin{align*}
 M &\text{ enters state } M_{f(i)} \\
 \text{if } M \text{ is in state } M_0 \text{ and } T_j \neq P_{i+1} \text{ then} \\
 &j \leftarrow j + 1 \\
 \end{align*}

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j \leftarrow 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j ← 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 j ← j + 1
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 j ← j + 1
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i := $ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

 if $T_j = P_{i+1}$ then

 $j \leftarrow j + 1$

 M enters state M_{i+1}

 if M is in state M_p then

 record $(j - p)$

 M enters state $M_{f(p)}$

 end

 else

 M enters state $M_{f(i)}$

 if M is in state M_0 and $T_j \neq P_{i+1}$ then

 $j \leftarrow j + 1$

 end

 end

end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_{j} = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_{p} then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_{0} and $T_{j} \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end

end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i := \text{current state in } M$ (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j := j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j := j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j \leftarrow 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end

| $f(i)$ | 0 | 0 | 1 | 1 | 2 | 0 |
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j \leftarrow 1
while $j \leq t$
do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 end
 M enters state $M_{f(p)}$
 end
else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$
do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate \(f(i) \) for \(1 \leq i \leq p \)

construct a skeleton DFA \(M \) for \(P \) using \(f \)

\(M \) starts in state \(M_0 \)

\(i := \) current state in \(M \) (updated with transitions)

\(j \leftarrow 1 \)

while \(j \leq t \) do

if \(T_j = P_{i+1} \) then

\(j \leftarrow j + 1 \)

\(M \) enters state \(M_{i+1} \)

if \(M \) is in state \(M_p \) then

record \((j - p)\)

\(M \) enters state \(M_{f(p)} \)

end

else

\(M \) enters state \(M_{f(i)} \)

if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then

\(j \leftarrow j + 1 \)

end

end

end

\(f(i) \)

\begin{array}{cccccc}
0 & 0 & 1 & 1 & 2 & 0 \\
\end{array}
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j-p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end

| $f(i)$ | 0 | 0 | 1 | 1 | 2 | 0 |
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
$i :=$ current state in M (updated with transitions)
$j \leftarrow 1$
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
calculate \(f(i) \) for \(1 \leq i \leq p \)
construct a skeleton DFA \(M \) for \(P \) using \(f \)
\(M \) starts in state \(M_0 \)
\(i := \) current state in \(M \) (updated with transitions)
\(j \leftarrow 1 \)
while \(j \leq t \) do
 if \(T_j = P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 \(M \) enters state \(M_{i+1} \)
 if \(M \) is in state \(M_p \) then
 record \((j - p)\)
 \(M \) enters state \(M_{f(p)} \)
 end
 else
 \(M \) enters state \(M_{f(i)} \)
 if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end
calculate \(f(i) \) for \(1 \leq i \leq p \)
construct a skeleton DFA \(M \) for \(P \) using \(f \)
\(M \) starts in state \(M_0 \)
\(i := \) current state in \(M \) (updated with transitions)
\(j \leftarrow 1 \)
while \(j \leq t \) do
 if \(T_j = P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 \(M \) enters state \(M_{i+1} \)
 if \(M \) is in state \(M_p \) then
 record \((j - p) \)
 \(M \) enters state \(M_{f(p)} \)
 end
 else
 \(M \) enters state \(M_{f(i)} \)
 if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i := \text{current state in } M$ (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end

end
calculate \(f(i) \) for \(1 \leq i \leq p \)

construct a skeleton DFA \(M \) for \(P \) using \(f \)

\(M \) starts in state \(M_0 \)

\(i \) := current state in \(M \) (updated with transitions)

\(j \leftarrow 1 \)

while \(j \leq t \) do

if \(T_j = P_{i+1} \) then

\(j \leftarrow j + 1 \)

\(M \) enters state \(M_{i+1} \)

if \(M \) is in state \(M_p \) then

record \((j - p) \)

\(M \) enters state \(M_{f(p)} \)

end

else

\(M \) enters state \(M_{f(i)} \)

if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then

\(j \leftarrow j + 1 \)

end

end

end
calculate \(f(i) \) for \(1 \leq i \leq p \)

construct a skeleton DFA \(M \) for \(P \) using \(f \)

\(M \) starts in state \(M_0 \)

\(i := \) current state in \(M \) (updated with transitions)

\(j \leftarrow 1 \)

\[\text{while } j \leq t \text{ do} \]

\[\text{if } T_j = P_{i+1} \text{ then} \]

\[j \leftarrow j + 1 \]

\(M \) enters state \(M_{i+1} \)

\[\text{if } M \text{ is in state } M_p \text{ then} \]

\[\text{record } (j - p) \]

\(M \) enters state \(M_{f(p)} \)

\[\text{end} \]

else

\(M \) enters state \(M_{f(i)} \)

\[\text{if } M \text{ is in state } M_0 \text{ and } T_j \neq P_{i+1} \text{ then} \]

\[j \leftarrow j + 1 \]

\[\text{end} \]

\[\text{end} \]
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j \leftarrow 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f

M starts in state M_0
i := current state in M (updated with transitions)
j ← 1

while $j \leq t$ do

if $T_j = P_{i+1}$ then

j ← $j + 1$

M enters state M_{i+1}

if M is in state M_p then

记录 $(j-p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

j ← $j + 1$

end

end

end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end

end

<table>
<thead>
<tr>
<th>$f(i)$</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j := j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j := j + 1$
 end
 end
calculate \(f(i) \) for \(1 \leq i \leq p \)

construct a skeleton DFA \(M \) for \(P \) using \(f \)

\(M \) starts in state \(M_0 \)

\(i := \) current state in \(M \) (updated with transitions)

\(j \leftarrow 1 \)

while \(j \leq t \) do

if \(T_j = P_{i+1} \) then

\[j \leftarrow j + 1 \]

\(M \) enters state \(M_{i+1} \)

if \(M \) is in state \(M_p \) then

record \((j - p) \)

\(M \) enters state \(M_{f(p)} \)

end

else

\(M \) enters state \(M_{f(i)} \)

if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then

\[j \leftarrow j + 1 \]

end

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
$j \leftarrow 1$

while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record ($j - p$)
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end

<table>
<thead>
<tr>
<th>$f(i)$</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$
do
if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
end
end

<table>
<thead>
<tr>
<th>$f(i)$</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate \(f(i) \) for \(1 \leq i \leq p \)
construct a skeleton DFA \(M \) for \(P \) using \(f \)
\(M \) starts in state \(M_0 \)
\(i := \) current state in \(M \) (updated with transitions)
\(j \leftarrow 1 \)
while \(j \leq t \) do
 if \(T_j = P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 \(M \) enters state \(M_{i+1} \)

 if \(M \) is in state \(M_p \) then
 record \((j - p) \)
 \(M \) enters state \(M_{f(p)} \)
 end
 else
 \(M \) enters state \(M_{f(i)} \)
 if \(M \) is in state \(M_0 \) and \(T_j \neq P_{i+1} \) then
 \(j \leftarrow j + 1 \)
 end
 end
end

\[
\begin{array}{ccccccc}
 f(i) & 0 & 0 & 1 & 1 & 2 & 0 \\
\end{array}
\]
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

\[j \leftarrow j + 1 \]

M enters state M_{i+1}

if M is in state M_p then

\[j \leftarrow j - p \]

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

\[j \leftarrow j + 1 \]

end

end

end

\[
f(i) \quad 0 \quad 0 \quad 1 \quad 1 \quad 2 \quad 0
\]
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j \leftarrow 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
Calculate $f(i)$ for $1 \leq i \leq p$

Construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

\[j \leftarrow j + 1 \]

M enters state M_{i+1}

\[\textbf{if } M \text{ is in state } M_p \text{ then} \]

\[\text{record } (j - p) \]

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

\[\text{if } M \text{ is in state } M_0 \text{ and } T_j \neq P_{i+1} \text{ then} \]

\[j \leftarrow j + 1 \]

end

end

\[f(i) \]

\[\begin{array}{ccccccc}
0 & 0 & 1 & 1 & 2 & 0 & 8
\end{array} \]
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i := \text{current state in } M$ (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

if $T_j = P_{i+1}$ then

$j \leftarrow j + 1$

M enters state M_{i+1}

if M is in state M_p then

record $(j - p)$

M enters state $M_{f(p)}$

end

else

M enters state $M_{f(i)}$

if M is in state M_0 and $T_j \neq P_{i+1}$ then

$j \leftarrow j + 1$

end

end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j ← 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
$j \leftarrow 1$
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$ do
 if $T_j = P_{i+1}$ then
 \begin{align*}
 j &\leftarrow j + 1 \\
 M &\text{ enters state } M_{i+1}
 \end{align*}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 \begin{align*}
 j &\leftarrow j + 1
 \end{align*}
 end
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$
if $T_j = P_{i+1}$ then
 $j := j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j := j + 1$
 end
end
calculate $f(i)$ for $1 \leq i \leq p$
construct a skeleton DFA M for P using f
M starts in state M_0
i := current state in M (updated with transitions)
j := 1
while $j \leq t$
do
if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
end
end
calculate $f(i)$ for $1 \leq i \leq p$

construct a skeleton DFA M for P using f

M starts in state M_0

$i :=$ current state in M (updated with transitions)

$j \leftarrow 1$

while $j \leq t$ do

 if $T_j = P_{i+1}$ then
 $j \leftarrow j + 1$
 M enters state M_{i+1}
 if M is in state M_p then
 record $(j - p)$
 M enters state $M_{f(p)}$
 end
 else
 M enters state $M_{f(i)}$
 if M is in state M_0 and $T_j \neq P_{i+1}$ then
 $j \leftarrow j + 1$
 end
 end
end
Results:

The pattern $P = \text{“abaabc”}$ occurs once in $T = \text{“aabbabaabaabca”}$ starting at position 8.