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ABSTRACT

The regulatory genome controls genome activity throughout the life of an organism. This
requires that complex information processing functions are encoded in, and operated by, the
regulatory genome. Although much remains to be learned about how the regulatory genome
works, we here discuss two cases where regulatory functions have been experimentally dis-
sected in great detail and at the systems level, and formalized by computational logic models.
Both examples derive from the sea urchin embryo, but assess two distinct organizational
levels of genomic information processing. The first example shows how the regulatory system
of a single gene, endo16, executes logic operations through individual transcription factor
binding sites and cis-regulatory modules that control the expression of this gene. The second
example shows information processing at the gene regulatory network (GRN) level. The
GRN controlling development of the sea urchin endomesoderm has been experimentally
explored at an almost complete level. A Boolean logic model of this GRN suggests that the
modular logic functions encoded at the single-gene level show compositionality and suffice to
account for integrated function at the network level. We discuss these examples both from a
biological-experimental point of view and from a computer science-informational point of
view, as both illuminate principles of how the regulatory genome works.

Keywords: Boolean modeling, developmental gene regulation, gene regulatory networks, sea

urchin.

1. INTRODUCTION

‘‘There exists today a very elaborate system of formal logic, and specifically, of logic as

applied to mathematics. This is a discipline with many good sides, but also with certain

serious weaknesses. .Everybody who has worked in formal logic will confirm that it is

one of the technically most refractory parts of mathematics. The reason for this is that it

deals with rigid, all-or-none concepts, and has very little contact with the continuous

1Department of Computer Science, Brown University, Providence, Rhode Island.
2Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena,

California.
This article is based on a lecture presented by Isabelle S. Peter at the workshop titled, ‘‘Genomic Regulation:

Experiments, Computational Modeling and Philosophy,’’ organized by Dr. Ute Deichmann at the Jacques Loeb Centre
for History and Philosophy of the Life Sciences at Ben-Gurion University of the Negev in Beer-Sheva, Israel.

# Sorin Istrail and Isabelle S. Peter, 2019. Published by Mary Ann Liebert, Inc. This Open Access article is
distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/
licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 26, Number 7, 2019

Mary Ann Liebert, Inc.

Pp. 685–695

DOI: 10.1089/cmb.2019.0097

685

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


concept of the real or of complex number, that is, with mathematical analysis. Yet

analysis is the technically most successful and best-elaborated part of mathematics. Thus

formal logic is, by the nature of its approach, cut off from the best cultivated portions of

mathematics, and forced onto the most difficult part of mathematical terrain, into com-

binatorics.’’—John von Neumann

Mechanisms to annotate genomic sequences encoding RNAs and proteins are well established, but

the term ‘‘regulatory genome’’ refers to parts of the genome that provide information not for the

structure of molecules but for when and where molecules are produced within an organism (Davidson, 2006;

Peter and Davidson, 2015). What will it take to annotate the regulatory genome? Which structural and

functional definitions will be adequate to describe the regulatory genome? Typically, regulatory DNA

encodes binding sites for transcription factors that in turn control gene expression. At the sequence level,

however, it is so far not possible to distinguish regulatory from nonregulatory sequences, since transcription

factor binding sites are small and occur throughout the genome in regulatory as well as nonregulatory DNA.

Thus at the structural level, the rules by which regulatory DNA encodes gene expression patterns are not

clearly understood, and the current definition of regulatory sequences relies on the observed function in gene

regulation.

From a computational point of view, the function of the regulatory genome is to execute highly complex

information processing functions at several levels of organization. At a basic conceptual level, the function of

regulatory DNA is to control the expression of individual genes. Even at this level, regulatory systems

associated with individual genes display a complex modular form, with clusters of transcription factor binding

sites encoded in multiple cis-regulatory modules that all contribute to the correct gene expression output. With

the discovery of gene regulatory networks (GRNs), it became clear, however, that the function of the regu-

latory genome goes beyond the control of individual genes. Thus, from a systems-level perspective, the

regulatory genome also provides the information system for the development of the animal body plan. GRNs

are networks of regulatory genes encoding transcription factors and signaling molecules, and of regulatory

sequences encoding their interactions. Cis-regulatory sequences controlling the expression of transcription

factors and signaling molecules affect not just the activity of single genes, but they also affect all other genes

expressed downstream of these regulators. Regulatory sequences that control the expression of transcription

factors contribute directly to the interpretation of the regulatory genome, since they determine the combination

of expressed transcription factors, the regulatory state (Peter, 2017). At this level, the regulatory genome

encodes information for genome activity in all different developmental and physiological contexts, throughout

the life of an organism.

How are the different levels of informational organization encoded in the regulatory genome? Important

insights into how the regulatory genome works have been generated in the sea urchin embryo by detailed

system-level dissection of regulatory systems at both the single-gene and GRN levels. One of the first and best

understood cis-regulatory control systems for an individual gene controls the expression of endo16, a gene

expressed in the midgut of sea urchin embryos (Soltysik-Espanola et al., 1994; Yuh and Davidson, 1996). The

expression of endo16 is controlled by several cis-regulatory modules, as is typical for any gene, and each

module includes binding sites for several transcription factors. The impact of the individual modules, and even

individual transcription factor binding sites within these modules, on the gene expression output of endo16 has

been analyzed experimentally and shows a complex code for information processing even at the single-gene

level. At the GRN level, one of the most complete experimental analyses of a network has also been conducted

in the context of endomesoderm development in the sea urchin embryo (Davidson et al., 2002a; Oliveri et al.,

2008; Croce and McClay, 2010; Peter and Davidson, 2010, 2011; Sethi et al., 2012; Materna et al., 2013; Cui

et al., 2014). This GRN consists of *50 regulatory factors that control gene expression and the specification

of several distinct endomesodermal cell fates during 30 hours of development.

Curiously, the computational function of the regulatory genome, at both the single-gene and GRN

levels, has been made accessible through computational logic models. The observation that the function

of the regulatory genome can be approximated by computational logic formulas, not unlike the logic

gates used in computer science, indicates that formal logic approaches successfully capture the infor-

mation processing functions of the regulatory genome at different scales. We discuss the insights that

have been generated by experiments and computational models, and that illuminate the functional

properties of the regulatory genome.
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2. CONTROL OF A SINGLE GENE: THE ENDO16 REGULATORY
SYSTEM IN EXPERIMENT AND MODEL

The cis-regulatory system controlling the expression of the sea urchin endo16 gene was one of the first to

be experimentally dissected in great detail, and as of today is probably still one of the best understood

regulatory control systems (Soltysik-Espanola et al., 1994; Yuh et al., 1994, 1996; Kirchhamer et al., 1996;

Yuh and Davidson, 1996). The regulatory function of this sequence was first experimentally discovered,

and then captured in an elegant computational model (Yuh et al., 1998). But to be able to appreciate this

model, we will first revisit some of the experimental work that served as its foundation.

The sequence fragment that encodes sufficient information to recapitulate the expression pattern of

endo16 during sea urchin endoderm development was identified by reporter assays (Yuh et al., 1994, 1996;

Yuh and Davidson, 1996). A DNA fragment of 2300 bp just upstream of the transcription start site of

endo16, when placed upstream of a reporter gene and injected into sea urchin embryos, drives expression at

first in endodermal progenitors and in the midgut during later development. Similar experiments have been

performed with many cis-regulatory sequences, demonstrating that regulatory DNA encodes information

for particular gene expression patterns. In the case of endo16, the individual regulatory functions encoded

within the cis-regulatory system have been carefully dissected. First, the 2300-bp fragment was separated

into seven modules (modules A–G; Fig. 1A) by restriction enzymes. Each module contains clusters of

binding sites that are recognized and bound by transcription factors, which regulate gene expression (Yuh

et al., 1994). All modules together encode a total of >30 binding sites for 13 transcription factors. The seven

modules were then tested for transcriptional activity, either alone or in various combinations (Yuh and

Davidson, 1996). These experiments revealed that of the seven modules, three contributed to the activation

FIG. 1. The endo16 cis-regulatory control system. (A) Schematic representation of the seven regulatory modules A–

G upstream of the basal promoter (Bp). Colored circles represent transcription factors binding to the binding sites

shown as red boxes. (B) Scheme of the computation functions of regulatory sequences within module A in response to

transcription factor binding and interaction with modules (B–G). (C) Computational model of module A functions

shown in (B). Yuh et al. (1998); Reproduced by permission from AAAS.
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of gene expression in the endoderm (modules A, B, and G) and four contributed to the repression of endo16

in the ectoderm (modules E, F) and skeletogenic mesoderm (modules C, D).

The key to understanding the regulatory logic of the endo16 cis-regulatory system is that neither the

modules nor the transcription factor binding sites operate by simple linear addition or subtraction of indi-

vidual regulatory functions. Instead, individual transcription factor inputs and individual modules operate by

nonlinear combinatorial synergism (Yuh et al., 1998). Thus, the complete construct with all seven modules

produces specific expression in the endoderm during development of the sea urchin embryo (Yuh and

Davidson, 1996). Furthermore, modules A, B, and G are each capable of driving endoderm expression on

their own, although they also show some expression in the ectoderm and skeletogenic mesoderm that is

not observed with the full construct (Yuh and Davidson, 1996). Similarly, a construct with all three modules

A, B, and G produces correct endodermal expression in addition to ectopic expression in ectoderm and

skeletogenic mesoderm. Of the three activating modules, module G shows only weak activity, while module

A drives endodermal expression predominantly during early development and module B drives expression

predominantly during later development in the midgut. Adding either module E or module F to the construct

with all three activating modules suppresses the ectopic expression in the ectoderm, meaning that both

modules encode binding sites that are sufficient to repress expression of endo16 in the ectoderm. Modules

C and D on the contrary are both required simultaneously to repress ectopic expression of the ABG

construct in the skeletogenic mesoderm (Yuh and Davidson, 1996).

The interesting feature of this regulatory system that is perhaps common to many transcriptional control

systems is that the modules, when present together, do not operate independently despite the fact that each

module also shows activity when tested individually. Thus, a construct containing the two activating

modules A and B shows more transcriptional activity, then the sum of the activity of the two constructs

carrying modules A and B alone. The data indicate that the contribution of module A can be described as a

linear amplification function by a factor of 4 of the output of module B (Yuh et al., 1996). Similarly, adding

module A to a construct including both modules B and G will lead to an amplification of the output of

construct BG by a factor of 3. Thus, module A, although active on its own, functions as a modulator of

activity when placed in combination with other modules. Even more remarkable, module A is also required

to mediate the repressive activity of modules CD, E, and F. Thus, when the repressive modules are

combined with the GBA activator modules or with module A alone, they turn off gene expression in

nonendodermal cell fates. However, if modules CD, E, and F are placed in combination with modules G

and B, without module A, the repressive modules have no effect on gene expression. This means that

module A contributes to both activation and repression of endo16 in response to alternative regulatory

modules, in a Janus-like function, while activating gene expression by itself. So how does an activating

module mediate the function of repressive modules?

The model for endo16 regulation shown in Figure 1B summarizes the logic operations that are executed by

module A (Yuh et al., 1998). This model captures the function of individual transcription factor binding sites

within module A that perform the computation of gene activity. Thus, binding sites CG1 and P are both

required for the interaction of module A with module B. The mutation of either CG1 or P will lead to gene

expression comparable with module A alone, even when module B is present, and to a reduction of gene

activity by a factor of 2. When by itself, module A drives gene expression in the endoderm of early sea urchin

embryos. This expression pattern is mediated by the binding site for Otx, and Otx is absolutely required for

endodermal expression. Without a functional Otx binding site, the endodermal activity of module A is

abolished (Yuh et al., 1998). However, even though mutation of the Otx binding site abolishes module A

function in the early endoderm, it does not interfere with the ability of module A to interact with module B

through binding sites CG1 and P. Furthermore, module A interacts with modules F, E, and DC through

binding site Z. The interaction of module A with the basal transcription apparatus (BTA) is mediated by

binding sites CG2, CG3, and CG4, and mutation of these sites leads to a reduction in gene expression by a

factor of 2. Thus, interactions between modules A and B and between module A and the BTA are equally

contributing to the fourfold increase of module B activity in the presence of module A. If we keep in mind that

each site is just a few nucleotides long, then this entire complex operation is encoded in just a few short

sequence elements with no particular apparent organization other than being part of module A.

The computation performed by module A in the control of endo16 expression can be approximated by

the logic model shown in Figure 1C (Yuh et al., 1998). Interestingly, this computational model is a hybrid

model including both discrete logic functions and the response to continuous inputs. The overall gene

output function in this model is shown as a continuous function in time that is modulated by discrete
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repression or amplification functions. Each term represented by Greek letters in Figure 1B and C captures

the regulatory impact of either transcription factor binding sites or cis-regulatory modules based on ex-

perimental observations. For some inputs, this impact is modeled as strictly Boolean, such as for the

repressor modules F, E, and DC, where presence of any one of the repressing transcription factors dom-

inantly turns off gene expression (e.g., if the integrated repressor function a= 1, then Z(t) = 0, and thus the

final output Y(t) = g * Z(t) = 0). In a Boolean logic statement, this would correspond to a dominant NOT

logic function. On the contrary, for other inputs, the impact is represented by an amplifier function, where

presence of an activating transcription factor amplifies the gene output by a factor of 2 (e.g., if P = 1 AND

CG = 1, b = 2, else b = 0). A few inputs are represented in this model as time-dependent continuous regu-

lators determining the kinetics of the gene output.

There are many lessons to be learned from the work on the endo16 regulatory system. One is that even a

relatively simple expression pattern requires complex computation of regulatory inputs. These regulatory

inputs occupy their respective binding sites within regulatory DNA wherever they are expressed in the

embryo, but whether this interaction leads to a gene expression output depends on the computation of the

overall output based on the information encoded in the proximal cis-regulatory module A. Module A

integrates the response to all other modules and the function of regulatory inputs binding to these modules.

The developmental functions of this regulatory system, that is, activation in endoderm or repression in

ectoderm, are mediated by separate DNA sequence modules, which makes it necessary to determine the

final output through a proximal element responsive to all other modules. In addition, the endo16 model

suggests a more profound truth, which is that the function of cis-regulatory sequences can be thought of in

the context of a logic framework, each module contributing a unique function.

This function is mediated by transcription factors that bind to regulatory modules, and can be described

by a combination of discrete or continuous functions. In the endo16 case, a few binding sites were

identified, which determined the dynamic change in expression levels while the repressive modules were

better approximated as Boolean ON/OFF switches. But regardless of the qualitative contribution of each

input, the overall gene expression output is computed by the integration of individual regulatory functions

according to strict logic rules. This idea was further explored by Istrail and Davidson (2005). This work

found that by comparing the function of many different cis-regulatory systems, several logic operations

could be defined, which were commonly executed by regulatory sequences. Thus, the regulatory systems

controlling expression of single genes can be described as a repertoire of logic gates that is valid and

applied across organisms, and a fundamental feature of the regulatory genome that is also used in the

following to describe higher level GRN functions.

3. LINKING REGULATORY SYSTEMS:
THE OPERATION OF REGULATORY CIRCUITS

The endo16 example shows a view of the regulatory genome that we are perhaps most familiar with,

which is the function of cis-regulatory systems to control gene expression in response to transcription factor

inputs. But the information contributed by the regulatory genome goes beyond the regulation of single

genes in response to a regulatory state. The regulatory genome is also responsible for generating the

regulatory states, thereby controlling the activity of the genome. The information for the control of genome

activity is stored in the genome in the form of GRNs (Peter and Davidson, 2015). GRNs consist of genes

encoding regulatory factors and of cis-regulatory sequences controlling gene expression. GRNs control the

expression of transcription factors and signaling molecules that in turn regulate the expression of all other

genes.

Interestingly, the regulatory systems controlling expression of transcriptional regulators are in principle

no different from the regulatory systems controlling expression of any other gene, although perhaps slightly

more complicated in design. However, what is substantially different is that cis-regulatory systems con-

trolling expression of transcriptional regulators are connected with one another through regulatory inter-

actions, whereby the transcription factor expressed as the output of a regulatory gene will serve as an input

into other cis-regulatory systems. As a result, the regulatory circuits that are formed by multiple regulatory

genes and their regulatory interactions have properties that go beyond regulating the expression of indi-

vidual genes in response to transcription factor inputs. By connecting multiple regulatory systems, these

circuits are able to execute more complex multigene logic functions.
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An example of a small regulatory circuit is shown in Figure 2A. Here, the three genes gcm, gatae, and

six1/2 are connected by a positive feedback circuit that is active in the sea urchin mesoderm (Ransick and

Davidson, 2006, 2012; Peter and Davidson, 2017). In this circuit, Gcm activates the expression of gatae,

and Gatae activates the expression of six1/2. The two regulatory feedbacks are provided by Gcm, activating

its own expression, and by Six1/2 activating gcm expression. The cis-regulatory system of gcm encodes the

response to both Gcm and Six1/2, and both transcription factors are required to ensure late expression of

gcm (Ransick and Davidson, 2012). The initial activation of this positive feedback circuit comes from

Delta/Notch signaling, which activates the expression of gcm (Ransick and Davidson, 2006; Croce and

McClay, 2010). In the presence of Delta/Notch signaling, gcm expression is activated despite the absence

of Gcm and Six1/2. And vice versa, Delta/Notch signaling is only present during early development and

then turns off. At this point, Gcm and Six1/2 regulate gcm expression even in the absence of Delta/Notch

signaling (Ransick and Davidson, 2012). Thus, Delta/Notch operates in OR logic to the other two inputs,

while Gcm and Six1/2 regulate gcm expression in AND logic (Fig. 2A). This regulatory logic is reflected in

the cis-regulatory system of gcm. The initial input, Delta/Notch signaling, activates a cis-regulatory module

(CRM) that is independent of the module responding to Gcm and Six1/2. The two CRMs function inde-

pendently, and therefore constitute an OR logic gate, while the two inputs regulating the second CRM have

to be both present to activate the AND logic gate.

The function of this regulatory circuit can be captured in a Boolean logic model (Fig. 2). In this model,

we assume that a gene is either expressed (1) or not expressed (0), and that expression of the gene will lead

to the production of functional levels of the corresponding transcription factor. Furthermore, we take into

account that there is a time delay between expression of a regulatory gene and activation of its target gene,

which is defined by the time it takes to produce sufficient amounts of transcription factor product to activate

FIG. 2. Structure and function of a positive

feedback circuit. (A) Architecture of the positive

feedback circuit composed of gcm, gatae, and

six1/2. (B) Boolean logic statements for the three

genes. Numbers correspond to time in hours, AT-

1 means gene has to be ON 1 hour earlier. (C)

Computed gene expression is ON (blue) or OFF

(gray) depending on available inputs for circuit

shown in (A) with long (4 hours) or short (1 hour)

transient Delta/Notch signal (D/N), with or with-

out the feedback interactions into gcm. Modified

from Peter and Davidson (2017).

690 ISTRAIL AND PETER



target gene expression (Bolouri and Davidson, 2003). If we assume that the delay time in this example is

1 hour, and we assume the regulatory logic for the three genes as given in Figure 2B, then all three regulatory

genes are expressed within 2 hours after turning on the initial input Delta/Notch signaling (Fig. 2C). Moreover,

the positive feedback into gcm is active after 3 hours (three regulatory steps at 1 hour each). If Delta/Notch

signaling is turned off after 4 hours, all three genes remain being expressed because of the operation of the

positive feedback circuit. However, if the Delta/Notch input lasts only for 1 hour, this does not provide enough

time to activate the positive feedback circuit, and the three regulatory genes are only expressed transiently for

as long as their inputs are present (Fig. 2C). Similarly, if the positive feedback circuit in this model is removed,

expression of the three regulatory genes depends exclusively on the Delta/Notch signaling input, and gene

expression turns off once the input is no longer available (Fig. 2C).

This example shows how the regulatory inputs controlling expression of gcm do not just operate in

isolation but are part of a regulatory circuit with a function beyond the control of gcm expression. Acti-

vating gene expression is a function of Delta/Notch signaling, but this signal lasts only for a few hours in

the sea urchin embryo, and the positive feedback circuit is required for continued gene expression. The

function of this positive feedback circuit is not to turn on expression of the three regulatory genes, but to

maintain their expression once the initial input is no longer available. Similar positive feedback circuit

configurations have been discovered in many GRNs that control very different developmental processes

(Narula et al., 2010; Peter and Davidson, 2015). Very often, positive feedback circuits occur downstream of

transient developmental signaling inputs, implying that they function in a way similar to the example

discussed here. Since in each developmental context these positive feedback circuits are composed of cell-

fate-specific sets of transcription factors, the similarity in circuit function must be caused by the similarity

in regulatory circuit architecture and not because of the specific molecular properties of the transcription

factors involved. Since the architecture of regulatory circuits and GRNs is encoded in the regulatory

genome, this means that important developmental functions are encoded in the regulatory genome in

addition to protein coding sequences. We will now turn to the function of the regulatory genome at the

GRN level, which is responsible for the control of entire developmental processes.

4. REGULATORY LOGIC AT THE LEVEL OF GENE REGULATORY
NETWORKS: THE ENDOMESODERM GENE REGULATORY NETWORK

GRNs have been experimentally studied in many developmental contexts (Peter and Davidson, 2015). One

of the most extensively characterized GRNs controls endomesoderm development in pregastrular sea urchin

embryos (Davidson et al., 2002a, 2002b; Oliveri et al., 2008; Peter and Davidson, 2010, 2011; Materna et al.,

2013). About 50 transcription factors and signaling ligands/receptors are involved in the specification of

endoderm and mesoderm during the first 30 hours of sea urchin development. These regulatory factors have

been identified based on a systematic analysis to be expressed in either endodermal or mesodermal cell fates.

The regulatory interactions between these transcription factors were analyzed by systematically perturbing the

expression of each transcriptional regulator and by monitoring the effect on the expression of all other

regulatory genes in the system. The results of gene expression analyses and perturbation experiments were

used to reconstruct the GRN that connects these regulators into a functional program for endomesoderm

development.

The function of the endomesoderm GRN is to determine that skeletogenic cells will form at the vegetal

pole in every embryo of this species, and that these cells will be surrounded by other mesodermal cell fates

and the endoderm that gives rise to the gut. The developmental organization of these cell fates within the

embryo is an important function of the GRN. Thus, the GRN ensures that the set of transcription factors

associated with each endodermal and mesodermal cell fate are expressed in the correct position within the

embryo. The GRN also controls which downstream differentiation genes are expressed in each cell fate. For

example, proteins involved in synthesizing a skeleton are expressed in skeletogenic cells (Rafiq et al.,

2014), whereas proteins with digestive enzymatic functions are expressed in the gut. The purpose of

experimentally dissecting GRNs is therefore to obtain a causal understanding on how the genome controls

the developmental organization of an embryo (Peter and Davidson, 2015).

The endomesoderm GRN model shown in Figure 3A shows how the expression of transcription factors is

regulated in each endomesodermal cell fate (Davidson et al., 2002a; Longabaugh et al., 2005; Oliveri et al.,

2008; Peter and Davidson, 2011; Longabaugh, 2012; Materna et al., 2013). Each of the colored boxes
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represents a distinct cell fate, and the genes shown in each box together compose the regulatory state of the

corresponding fate. For each gene, the regulatory inputs that regulate its expression are shown as linkages

into the associated cis-regulatory system, while the regulatory functions of the transcription factor outputs

are shown as linkages into the regulatory systems of target genes. In a GRN, individual cis-regulatory

systems are therefore connected through the transcription factors with which they are associated. We have

seen in the example of endo16 how individual cis-regulatory binding sites and modules are computed to

control expression of a single gene. But if we extrapolate this to the level of a GRN, how does the logic that

is encoded in the regulatory systems of different genes operate when connected within a network? Do these

FIG. 3. Regulatory logic of the endomesoderm GRN. (A) Architecture of the GRN underlying endomesoderm

development in sea urchins. (B) Computed expression of the endomesoderm GRN in endodermal cell fates based on the

regulatory information shown in (A). Computed expression (yellow) or absence of expression (gray) of genes is shown

in comparison with gene expression data from the sea urchin embryo; disagreement is shown by filled or open

rectangles within each field. Modified from Peter et al. (2012). GRN, gene regulatory network.
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systems operate independently, or is there an intrinsic logic to combining several genes into a network

circuit? Is there a degree of freedom to connect cis-regulatory systems, or are there specific rules for the

compositionality when combining the logic of cis-regulatory sequences?

A computational model of the endomesoderm GRN provides perhaps some answers to these questions.

Thus, in an attempt to capture the dynamic behavior of a system of interconnecting regulatory genes, a

Boolean logic model was mathematically defined based on the experimental observation of the en-

domesoderm GRN (Peter et al., 2012). The purpose of this computational model was to test whether the

GRN that was reconstructed as shown in the topological model in Figure 3A would suffice to explain the

developmental control of gene expression and the specification of different endomesodermal cell fates in

the sea urchin embryo. The basic components of this model are (1) the regulatory logic controlling each

gene in the GRN, identified based on the effect of experimental perturbation of its transcription factor

inputs; (2) a temporal delay function associated with each regulatory interaction; and (3) maternal inputs

that initiate the activation of the zygotic developmental program.

The regulatory logic of each gene in this model was captured by Boolean logic statements that were

formulated based on the regulatory inputs controlling expression of each gene and based on the logic

operation computed by the cis-regulatory system (Peter et al., 2012). For instance, if perturbation exper-

iments indicate that two transcription factors A and B regulate the expression of gene C, and that per-

turbation of either A or B leads to a strong reduction of expression of gene C, this would indicate that the

presence of both A and B is required for activation of gene expression. The Boolean logic statement that

captures the regulatory logic for gene C would therefore be C = A AND B. The time function in this model

derives from the time it takes from starting transcription of an upstream regulatory gene to producing levels

of transcription factor sufficient to regulate target gene expression. This time was calculated based on RNA

and protein synthesis rates to be *3 hours in sea urchins developing at 15C (Bolouri and Davidson, 2003).

Surprisingly, using a temporal step function of 3 hours for almost all regulatory interactions was a correct

assumption to reproduce the temporal and spatial expression of almost all genes in the system. And finally,

the maternal inputs are transcription factors that are present in the egg and in the model these factors are

turned ON by default for the first few hours of development.

This Boolean computational model was used to compute expression or absence of expression for

each gene in the endomesoderm GRN based on a Boolean logic statement and based on the presence or

absence of its inputs. Except for the maternal factors, these inputs are present only if the correspond-

ing regulatory genes are computed as expressed based on their own associated logic statements. The

computed expression for all regulatory genes in the GRN model is shown in Figure 3B for the endoderm

domain during 30 hours of development. A comparison of the gene expression patterns computed by the

Boolean logic GRN and the gene expression experimentally observed in the sea urchin embryo dem-

onstrates that the information captured in the GRN is sufficiently complete to recapitulate the embry-

onic gene expression patterns. Thus, this system behaves as an automaton, where early maternal inputs

initialize a program that is self-sufficient to operate without any further inputs from outside the system.

This analysis shows that it is possible to obtain a complete explanation for developmental gene activity

based on the experimental analysis of a GRN. In addition, these results suggest that the cis-regulatory

systems at each network node can be combined without further instructions to reproduce the correct

system-level output of an entire GRN both in terms of gene expression and in terms of differential cell

fate specification.

The observation that a system of interconnected cis-regulatory modules is sufficient to capture an

entire developmental program provides a powerful confirmation of the information processing function

of the regulatory genome. Of course, although the examples here derive from the sea urchin embryo, the

computation of logic functions by regulatory sequences must represent a general property of the regu-

latory genome that applies to sea urchins as well as to any other organism, in development and beyond. It

demonstrates that the regulatory logic controlling individual genes can be viewed as a system of logic

gates that compute developmental gene expression. Returning to von Neumann’s quote, although mathematical

analysis is applicable to many areas of biology, the system-level information processing functions of the

regulatory genome might be better approximated by formal logic. Thus, the logic encoded in regulatory DNA

provides a unifying concept that defines the function of the regulatory genome, from the modular regula-

tory systems controlling individual genes to the networks controlling genome activity throughout biological

processes.
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